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Granular media are reversible and elastic if the stress increments are small enough. An elastic stress-strain
relation, employed previously to determine static stress distributions, in this paper is compared to experiments
by Kuwano and Jardine �Geotechnique 52, 727 �2002�� on incremental stress-strain relations, and shown to
yield satisfactory agreement. In addition, the yield condition is given a firmer footing.
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I. INTRODUCTION

Grains slide and roll in granular media, in addition to
being compressed and sheared. The strain associated with the
former is frequently orders of magnitude larger, but only the
latter, the elastic strain associated with deforming the grains,
stores energy reversibly and maintains a static stress. Sliding
and rolling are irreversible, plastic processes that only heat
up the system. �Rolling is not itself irreversible, but the ro-
tational energy is quickly lost when a grain crushes into its
neighbors.� This observation indicates that it is the elastic
strain uij, and not the total strain �ij, that is the relevant
variable in granular media. We therefore take the granular
energy as a function of the elastic strain, w=w�uij�, the stress
as its derivative, �ij =−�w /�uij, and refer to this approach as
granular elasticity �GE�. Given an explicit expression for w,
one may then use �ij =�ij�ukl� to close the force balance, and
calculate the static granular stress distributions of any desired
geometry. Note the remarkable conclusion: The plastic part
of the strain, though numerically dominant, is irrelevant for
static stress fields.

When searching for an appropriate energy expression, it is
important to keep the following fact in mind: Diverging
compliance at diminishing compression is a basic character-
istics of granular media, because it reflects the geometric fact
that less material is being deformed. This is trivially true for
the Hertzian contact between two grains, but also holds on
larger scales. Therefore, the approximation of infinitely rigid
grains is not a useful or realistic one for stress determination.
A simple expression that will be given in Eq. �7� of the next
section has this fact built in, and was previously shown to
lead to realistic stress distributions in silos, sand piles, and
sand banks subject to a point load �2�.

These being indirect pieces of evidence, the question re-
mains whether the elastic strain field uij may be directly mea-
sured. The answer is yes, and the method is equally suitable
for experiment and simulation. The relevant observation is
that plastic contributions do not always dominate the granu-
lar strain field. When probing the response of the total strain
��ij to a stress increment ��k�, the plastic portion decreases
as the amplitude of the increments does, such that ��ij
=Mijk���k� holds with ��k���uk�, and the elastic strain in-
crement �uk� becomes directly observable. This is plausible,
as slips should be rare in the limit of vanishing increments.
And this is borne out by experiments and simulations alike:

Kuwano and Jardine observed �1� that if the strain incre-
ments are kept below 10−4, the stress increments become
reversible and incrementally linear �i.e., symmetric with re-
spect to loading and unloading�. In molecular-dynamics
simulations, Alonso-Marroquin and Herrmann found the
same behavior �3�: For strain changes around 10−6, the plas-
tic contributions are around 10−14, smaller by eight orders of
magnitude. This circumstance is very useful, because, given
the energy w, we can calculate ��ij = ���ij /�uk���uk� and
compare ��ij /�uk�=�2w /�uij�uk� with the measured Mijk�.
As we shall see, many measured features are reproduced,
frequently with quantitative agreement. This is the main re-
sult of the present paper, and is rendered in Secs. IV and V.
The yield behavior, as a result of an instability in the energy
w, is discussed in Sec. III and the Appendix. The elastic part
of the flow rule is considered in Sec. VI.

II. GRANULAR ELASTICITY

The theory of isotropic linear elasticity is simple, consis-
tent, and complete. It starts with an energy w that depends on
the strain, uij =

1
2 ��iUj +� jUi�, with Ui the displacement vec-

tor,

w = K�2/2 + �us
2 �� � − u��, us � �uij

0 uij
0 �; �1�

see �4�. K ,��0 are two material-dependent constants, re-
ferred to as the bulk and shear moduli. �u�� is the trace of uij,
and uij

0 �uij −
1
3u���ij its traceless part.� The stress-strain re-

lation is obtained as a derivative,

�ij = − �w/�uij = K��ij − 2�uij
0 , �2�

P � ���/3 = K�, �s � ��ij
0 �ij

0 = 2�us, �3�

with the pressure P and shear stress �s being two frequently
employed quantities. Some ramifications of isotropic linear
elasticity are the following. �1� Since the stress �ij is given as
a function of three variables Ui, the three components of the
force balance � j�ij =�Gi �with � the density and Gi the
gravitational constant� suffice to uniquely determine Ui, from
which the stress �ij may be calculated for arbitrary geometry.
�2� The inverse compliance tensor Mijk� linking the incre-
ments of stress and strain, d�ij and duk�, is both isotropic and
constant,
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��ij =
��ij

�uk�

�uk� � Mijk��uk�, �4�

Mijk� = K�ij�k� − ���ik� j� + � jk�i�� . �5�

�3� As the pressure P=K� does not depend on the shear us,
there is no volume dilatancy, ���P /�us���=0. �4� Yield is not
predicted. �Note that while the points 2, 3, and 4 depend on
the form of the energy w, the statement under �1� is quite
general.�

These equations account well for isotropic elastic media,
such as amorphous solids, but not for granular systems. Sand
displays volume dilatancy, possesses a compliance tensor
with significant stress-induced anisotropy, and, most impor-
tantly, never strays far from yield, displaying significant ir-
reversible, fluidlike, plastic movements in its vicinity �5,6�.

The first attempt to modify linear elasticity, so as to better
account for granular behavior, was due to Boussinesq �7�. He
assumed, around 1874, stress-dependent elastic moduli
K ,�	�1/2	 P1/3 in Eq. �2�,

�ij 	 ��
��ij −
3 − 6	

1 + 	
uij

0�,
3 − 6	

1 + 	
=

2�

K
, �6�

with 	 the constant Poisson ratio. This nonlinear stress-strain
relation, sometimes referred to as the “quasielastic model,” is
employed to understand granular compression �8� and sound
velocity �9�. Unfortunately, the above fault list of linear elas-
ticity remains partly intact: �a� As P remains a function of �
alone, dilatancy vanishes, ��P /�us��=0, and �b� yield must
still be postulated. Worst of all, no energy w exists such that
�ij =−�w /�uij holds �this may be demonstrated by showing
that the associated Maxwell relation is violated, ��ij /�u�k
����k /�uij�.

Therefore, we choose to start from the energy �10�

w = ���B 2
5�2 + Aus

2� = B��� 2
5�2 + us

2/
� , �7�

with A ,B�0 denoting two density-dependent material con-
stants, and 
�B /A. The associated stress is

�ij = ���B��ij − 2Auij
0 � + A us

2

2��
�ij . �8�

These two expressions define what we refer to as granular
elasticity. When compared to Eq. �6�, the only difference is
the last term 	us

2 /��, which, however, is amazingly useful
in accounting for granular behavior. It yields volume dila-
tancy and shear-induced anisotropy, and, above all, predicts
yield at the Coulomb condition

�s/P = �2A/B = �2/
 . �9�

Moreover, solving the force balance equation � j�ij =� j�ij
=�Gi for three classical cases, silos, sand piles, and a granu-
lar bank under a point load, we find Eq. �8� to result in rather
satisfactory agreement with experiments �see �2��.

In Ref. �1�, Kuwano and Jardine measured ��ij and �uk�

independently, obtaining the matrix Mijk� connecting them,
��ij =Mijk��uk�. The data in Ref. �1� are extensive, compris-
ing 36 components of Mijk�, all as functions of pressure,
shear, and the void ratio e. �There are empirical rules for

these components in soil mechanics, which the authors found
to be well satisfied. When these are employed, only five in-
dependent coefficients are left.� In this paper, we compare
these data—including the empirical rules—to ��ij /�uk� as
calculated from Eq. �8�. It represents an ambitious test of the
energy w, Eq. �7�: The energy and stress of Eqs. �7� and �8�
depend only on two material parameters A and B, with their
ratio fixed by the yield condition, Eq. �9�. Since the Ham
River sand used in the experiment has a Coulomb yield angle
of around 28°, implying 
�B /A=5 /3, only A, a scale fac-
tor and a measure of the total stiffness, is left as an adjustable
parameter. Taking A=5100 MPa, we find satisfactory agree-
ment with the data of �1� at all values of pressure and shear,
for the void ratio e=0.66—except close to yield, which, due
to increased plastic contributions, represents an especially
difficult experimental regime. Because Kuwano and Jardine
noticed that e alters only the total stiffness, by the factor f
��2.17−e�2 / �1+e�, taking A ,B	 f achieves agreement
with respect to any other values of e as well. Similar agree-
ment to their data on ballotini �glass beads� was achieved by
taking A=4200 MPa. To summarize, we take

A = A0 �
�2.17 − e�2

1.3736�1 + e�
, 
 �

B
A =

5

3
, �10�

with A0=5100 and 4200 MPa being the values of A for e
=0.66, for Ham River sand and ballotini, respectively.

Finally, some remarks. First we consider the subtle ques-
tion of whether a reference state exists given the predomi-
nantly plastic nature of the displacement. For the following
reasons we believe it does. Forgetting for a moment the
gravitation, and dividing the total displacement into two

parts U� tot=U� +U� p, because the elastic displacement U� is the
portion that changes the energy reversibly, any state that does
not possess elastic energy and is not subject to any external

stresses—implying a vanishing U� —is a valid reference state.
�That such a reference state may not be stable does not ap-
pear to constitute a legitimate worry, because it can always
be stabilized by an arbitrarily small but finite external pres-
sure.� There are innumerable reference states, all connected
by purely plastic displacements. If a reference state is de-
formed by slowly increasing the stress, the total displace-
ment will contain both elastic and plastic contributions. If we
change the reference state by the same plastic displacement,
the new reference state is separated from the deformed state
by a purely elastic displacement. Since such an evolving ref-
erence state exists for every stressed state, elastic displace-
ments remain well defined in spite of arbitrarily strong plas-
tic motions. �Turning on the gravitation simply renders the
internal stress nonuniform. The same conclusion holds.�

Second, we consider inherent, or fabric, anisotropy, a
well-known phenomenon in soil mechanics: Sand is some-
times anisotropic even when subject to isotropic stresses. We
believe that this is primarily due to density inhomogeneities:
Since the elastic coefficients A ,B are density dependent, a
nonuniform density indeed renders the system’s response an-
isotropic whatever the stress is. Note that the density gets
jammed at formation, and any inhomogeneities will remain
forever if unperturbed. In fact, the central dip in the bottom
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pressure of sand piles may well be understood by assuming
that some procedures applied to form the piles produce non-
uniform density fields �see �2��. Similar inhomogeneities
may also result from avalanches. This is the reason we de-
cided, as a first step, to neglect any other conceivable reasons
for fabric anisotropy, taking strain and density as the only
variables of GE. Should agreement between theoretical pre-
dictions and experimental data prove elusive in some cases,
necessitating the inclusion of more variables, our strategy
should nevertheless give us better ideas of what this variable
is, where its main influence lies, and how large it is.

III. YIELD AND ENERGETIC INSTABILITY

Any macroscopic energy must be a convex function of its
state variables to ensure stability—this is why compressibil-
ity and specific heat are always positive �cf. �11��. Being a
quadratic function of � and us, the energy of linear elasticity,
Eq. �1�, is always convex. Conversely, the granular energy,
Eq. �7�, is convex if and only if

��2w/��2�us

 0, ��2w/�us

2�� 
 0, �11�

��2w/�� � us�2 � ��2w/��2�us
��2w/�us

2�� �12�

hold. �See the Appendix for some subtleties in this context.�
More explicitly, this implies

us
2/�2 � 2B/A , �13�

drawing the boundary for the region of stable strains.
Deriving 4P /�s= �� /us�� �2B /A+us

2 /�2� from Eq. �8�,
and inserting us

2 /�2=2B /A into it, Eq. �9�, the Drucker-
Prager version of the Coulomb yield condition
�cf. �13,14�� is obtained. The actual Coulomb yield
condition �s / P= ��18+6L2 sin �c� / �L sin �c+3�, where L
��3 tan� 1

3arcsin��6�ij
0 � jk

0 �ki
0 /�s

3�� denotes the Lode param-
eter, will result only if terms 	uij

0 ujk
0 uki

0 are included in
Eq. �7�.

In a classic paper, Goddard �9� started from Hertz contacts
between grains, and considered the structure of the energy
and stress. He concluded that, if the topology of the grain
contacts does not change with stress, the energy is a homo-
geneous function of degree 5/2 in the strain uij, of the form
w=�2.5g�us

2 /�2 ,uij
0 ujk

0 uki
0 /�3�, where g is an arbitrary func-

tion. As Eq. �7� is clearly a special case of this general en-
ergy, we take this as a further, microscopically founded, sup-
port for our starting point.

There is an instructive analogy between the granular
stress-strain relation, Eq. �8�, and the van der Waals equation
of state for real gases. Boyle’s law is stable everywhere
while the van der Waals equation has a nonphysical zone, the
liquid-gas instability, in which the compressibility is nega-
tive. Similarly, Hooke’s law is stable everywhere, but the
granular stress-strain relation has a forbidden region, that of
yield. Note that

��P/����s

 0 �14�

is implied by Eqs. �11� and �12� �see the Appendix�, so this
forbidden region is also characterized by a negative com-

pressibility. The actual innovation of the van der Waals
theory is the fact that the condition for the onset of the
liquid-gas transition, instead of being an extra input, is im-
plied by the free energy. Similarly, yield is now implied by
Eq. �7�.

IV. GRANULAR STRESS-STRAIN RELATION

The granular stress-strain relation Eq. �8� and the defini-
tions of Eq. �3� imply

P = �3/2�B + 1
2Aus

2/�2� , �15�

�s = 2A�1/2us. �16�

Eliminating �, we obtain

B�s
4 − 8A3Pus

3�s + 8A5us
6 = 0. �17�

Figure 1 plots �s vs us for the fixed pressure of P
=0.1 MPa. Note how remarkably linear the plot is—almost
until yield, where the curve turns back abruptly. �Dashed
lines are used throughout for unstable states.� This behavior
is approximated by the elastoplastic model, frequently used
in soil mechanics: linear elasticity followed by yield and flat
plastic motion; see the lower insets in Fig. 1. Nonlinearity in
shear is relevant only when yield is close.

If instead us is eliminated from Eqs. �15� and �16�, the
expression

�s
2 + 8AB�3 − 8AP�3/2 = 0 �18�

allows a plot of pressure P vs compression �, at given �s
=0.1 MPa; see Fig. 2. The pressure increases with the com-
pression, implying a positive compressibility, only in the re-
gion of large �. The compressibility is negative where � is
small, and the stability condition, Eq. �9� or �14�, is violated.
The van der Waals equation of state, �P−a /v2��v−b�=RT,
is quite similar, where 1 /v corresponds to �, R is the gas
constant, and v the molar volume; see, e.g., �11�. The system
can be in either the dense liquid state or the rarefied gaseous
phase, with the zone in between forbidden; see inset of
Fig. 2.

Alternatively, we may plot � vs us at fixed P, or P vs �s
at fixed �; see Figs. 3 and 4, both showing clear evidence of
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FIG. 1. Shear stress vs shear strain for given pressure: for GE,
linear elasticity, and elastoplastic theory �upper and lower insets�.
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“volume dilatancy,” the fact �first noticed by Reynolds� that
granular systems expand with shear, or ��� /�us�P�0 or
��P /��s���0. For linear elasticity, these plots are simply
horizontal, and the derivatives vanish. If the Boussinesq
model Eq. �6� were employed, all four plots would be much
harder to distinguish from those of linear elasticity. So the
last term of Eq. �8� is indeed essential. �Plastic motion, not
considered here, contributes to additional dilatancy, and may
dominate.�

Hooke’s law Eq. �2�, �ij =K��ij −2�uij
0 , may be written as

uij =
	

E
�nn�ij −

�ij

2�
, �19�

with the Poisson ratio 	 and the Young modulus E given as

E =
9�K

3K + �
, 	 =

3K − 2�

6K + 2�
. �20�

If the granular stress-strain relation Eq. �8� is required to
assume these familiar forms, either Eq. �2� or Eq. �19� leads
to strain dependency of K ,�,

K = �1/2�B + 1
2Aus

2/�2� , �21�

� = A�1/2, �22�

and via Eq. �20� also of E ,	. As this is an intuitive way to
characterize nonlinear elastic behavior, we shall consider
their shear and pressure dependency more closely here. Us-
ing Eqs. �15� and �16�, we write these moduli as

� = �̃
1/3, K = K̃
−2/3,

E = Ẽ
3B + A
3B + A



1/3, 	 =
3B − 2A


6B + 2A

, �23�

where 
 quantifies shear,


 = 1
2 �1 � �1 − �B/2A���s/P�2� , �24�

and �̃, K̃, Ẽ, and 	̃ denote the corresponding values without
shear, at 
=1,

�̃ = A
P

B�1/3
, K̃ = B
P

B�1/3
, Ẽ =

9AB
3B + A
P

B�1/3

�25�

�see Fig. 5�. �The positive sign in Eq. �24� is the stable
branch, which meets the unstable branch with the negative
sign at yield, where the square root vanishes.�

As mentioned in the Introduction, the P1/3 dependence of
the characters with tildes is well known. For typical granular
behavior, however, the more relevant dependence is that on
shear, which derives—as for yield and dilatancy—from the
last term of Eq. �8�.

V. THE COMPLIANCE TENSOR

A. Theoretical expressions

Starting from Eq. �8�, the tensor Mijk� of Eq. �4� is calcu-
lated as

���

���

����

� � ���

�����

����

��

����
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FIG. 2. Thick line: Pressure vs compression at fixed shear for
GE. �Dashed lines represent unstable states.� Thin straight line: The
same curve for linear elasticity. Inset: The analogous instability in
the isothermal curve of the van der Waals equation of state.
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FIG. 3. Compression � vs shear strain us, at fixed pressure, for
GE. The dashed line is again unstable. In linear elasticity, the same
curve is a horizontal straight line.
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FIG. 4. Pressure P vs shear stress �s, at fixed compression, for
GE. The dashed line is unstable. In linear elasticity, the same curve
is a horizontal straight line.
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Mijkl = A����us
2/4�2 + 4/3 − 3B/2A��ij�kl

− �ik� jl − �il� jk + �uij�kl + �ijukl�/�� . �26�

The compliance tensor �ijk�, defined via

duij = �ijk�d�k�, �27�

is obtained by inverting Mijk�,

�ijk� =
�Aus

2 + 2�A − B��2��k��ij

6A�1/2�Aus
2 − 2B�2�

−
�ik� j� + �i�� jk

4A�1/2

+
uij��k� + uk���ij + uijuk�

3�1/2�Aus
2 − 2B�2�

�28�

=
9A5�s

2 + 8�4A − 9B��6

54��A5�s
2 − 8�6B�

�k��ij −
�ik� j� + �i�� jk

4�

−
4A3�3��ij

0 �k� + �k�
0 �ij� − 3A5�ij

0 �k�
0

9��A5�s
2 − 8�6B�

. �29�

In Eq. �28� �ijk� is strain and in Eq. �29� stress dependent—
where the conversion is calculated using �=�2 /A2, uij

0 =
− 1

2�ij
0 /�, us= 1

2�s /�, with �=A�
P /B�1/3 �cf. Eqs. �23� and
�25��. Equation �29�—surprisingly complicated if the starting
expression for the energy serves as a benchmark—is what
may be compared to experiments directly.

Before we do this, it is useful to pause and notice that the
last term of both Eqs. �26� and �29� deviates structurally
from the isotropic form of Eq. �5�. More generally, for an
isotropic medium and in the presence of pure compression
��ij

0 =0 , P�0�, we may �quite independently of the specific
form of the elastic energy� take �ijk� to be

�ijk�
0 = �1�ij�k� + �2��ik� j� + �i�� jk� , �30�

with �1 ,�2 arbitrary scalar functions of � ,us, and the Lode
parameter L. This is because both �ij and uk� are symmetric,
and hence �ijk�=� jik�=�ij�k; and the Maxwell relation holds,
�2w /�uij�ulk=�2w /�ulk�uij, so that �ijk�=�k�ij. In the pres-
ence of shear, �ij

0 �0, �ijk� can take on many more terms. To
linear order in �ij

0 , these are

�3��ij
0 �k� + �ij�k�

0 � + �4��ik
0 � j� + �i�

0 � jk + � j�
0 �ik + � jk

0 �i�� .

To second order, we may substitute all the above �ij
0 with

�ik
0 �kj

0 , and also add the terms �ij
0 �k�

0 and �ik
0 � j�

0 +� jk
0 �i�

0 . We
shall refer to �ijk�

0 as being isotropic, and the �ij
0 -dependent

ones as displaying “shear-induced anisotropy.” If the me-
dium is inherently anisotropic, say because the grains are
pressed into some quasiperiodic array, leading to a preferred
direction n� , the above expression is more complicated, be-
cause �ij in Eq. �30� may now be substituted by three differ-
ent tensors: �ij −ninj, ninj, and �ijknk. For triclinic symmetry
and without the Maxwell relation, all 36 elements of �ijk� are
independent—even in the absence of shear. As mentioned,
this fabric anisotropy is not included in the present consid-
eration, because the starting expression for the energy, Eq.
�7�, is isotropic.

B. Comparison with experiments

Because �ij and uij are symmetric, each characterized by
six independent components, Eq. �27� may be written as a

vector equation du� = �̂ d�� , with �̂ a 6�6 matrix, and du ,d�
given as in Eq. �31�. In the so-called “principal system” of
coordinates, in which �ij is diagonal �but not ��ij�, Kuwano
and Jardine take this vector equation to be given as �1�

�
du11

du22

du33

2du23

2du13

2du12


 =�
0 0 0

Ĉ 0 0 0

0 0 0

0 0 0 G23
−1 0 0

0 0 0 0 G13
−1 0

0 0 0 0 0 2G12
−1


�
d�11

d�22

d�33

− d�23

− d�13

− d�12



�31�

with

Ĉ = �− 1/E1 	12/E2 	13/E3

	21/E1 − 1/E2 	23/E3

	31/E1 	32/E2 − 1/E3

 . �32�

Gij is referred to as the shear modulus in the i-j plane, Ei the
Young modulus along i, and 	ij the Poisson ratio for the
effect of the i strain on the j strain. Identifying these moduli
with components of the �ijk� tensor,

Gij = − 1/4�ijij ,

Ei = − 1/�iiii,
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FIG. 5. Variations of K ,� ,E ,	 with �s / P for GE. The moduli
are rescaled by their values at �s=0, denoted with a tilde. Their
variation 	P1/3 is shown in the inset.
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	ij = − �iij j/� j j j j �33�

�for i� j and without summation over i or j�, we may em-
ploy Eq. �29� to obtain

G13 = G23 = G12 = � , �34�

Ei =
27��A5�s

2 − 8�6B�

9A5�s
2 − 72�6B − Asi

2 , �35�

	ij =
1

2

9A5�s
2 − 72�6B + 2Asisj

9A5�s
2 − 72�6B − Asj

2 , �36�

with �=A�
P /B�1/3, si�3A2�i
0−4�3, �i

0��i− P, and �i

denoting the three diagonal components of �ij in the princi-
pal system. Before embarking on a comparison, we shall first
establish a few qualitative features from theory. �1� Without
shear, �i

0→0, all Ei are equal,

Ei → Esec =
27AB

2A + 9B
P

B�1/3
, �37�

where Esec is called the secant Young modulus. The same
holds for the Poisson ratios,

	ij → 	̃� =
1

2

9B − 4A
9B + 2A

. �38�

�Note that 	̃�= �22 /17�	̃ and Esec= �18 /17�Ẽ.� �2� Because of
Eq. �30� and irrespective of the energy specified �for an iso-
tropic medium�, we have E1=E2=E3, 	12=	13=	23, and
G12=G13=G23 in the absence of shear, �ij

0 =0. Any discrep-
ancy with experiment therefore may imply fabric anisotropy.
�3� Finite shear will split Ei and 	ij, but not Gij; cf. Eq.
�34�—though this is an energy-related feature. �4� Because

of the Maxwell relation, the matrix �̂ of Eq. �31� is symmet-
ric, implying especially �no summation�

	ijEi = 	 jiEj . �39�

This symmetry was noted by Love �15� and adopted by Ku-
wano and Jardine in interpreting their data �1�. �5� The
moduli E , � , and 	 are related as E=2��	+1�; see Eqs.
�20�. A similar relation holds for �, Ei, and 	ik �no summa-
tion, see Eqs. �35� and �36��,

Ei�6�	ij − Ej�2 = 4Ej�3� − Ei��3� − Ej� . �40�

It is important to realize that all formulas of this section hold
not only for Cartesian coordinates, i→x ,y ,z, but also for
cylindrical ones, i→z ,� ,�. Taking �=u��+u��+uzz, and
similarly for us, we may again start from the same energy,
Eq. �7�, and derive all the results here. �Spatial differentiation
is what mars the similarity. Yet once the strain components
u�� ,u�� , . . . are given, no spatial differentiation is needed.�
The one difference is that, for any constant �ij in Cartesian
coordinates, there is always a principal system. In cylindrical
coordinates, this holds only if the stress is also cylindrically
symmetric. In other words, only if the stress is uniaxially
diagonal, �ij =diag��1 ,�2 ,�3� with �2=�1 in Cartesian co-
ordinates, will it be diagonal cylindrically.

Because Kuwano and Jardine �1� used an axial-symmetric
device for their measurements, the stress they apply is indeed
cylindrically symmetric, with: G�z=G�z, E�=E�, 	�z=	�z,
and 	z�=	z� �cf. Eqs. �34�–�36� noting that s�=s��. In addi-
tion, Eq. �39� leads to 	��=	��. Following �1�, we refer to
the response coefficients being measured as Ghh�G��, Gvh
�G�z=G�z, Eh�E�=E�, Ev�Ez, 	hh�	��=	��, 	hv�	�z
=	�z, and 	vh�	z�=	z�, where h is the horizontal direction,
either � or �, and v the vertical direction z; see the cylinder
of Fig. 6. �These are seven coefficients characterizing the
independent five mentioned in the Introduction.� The main
plots of Fig. 6 compare the theoretical curve �calculated by
taking ��=��=�h and �z=�v in Eqs. �34�–�36�� and the ex-
perimental data �measured with Ham River sand� of Eh, Ev,
Gvh, and Ghh, as functions of P, for �h=0.45�v. The inset
shows the same comparison for 	vh and 	hh. We especially
note that theory and experiment agree on the ordering of the
induced anisotropy, i.e., 	vh�	hh, Ev�Eh, and Ghh�Gvh,
which are pairwise equal in linear elasticity and the Bouss-
inesq model. �The slight difference between Ghh and Gvh
may be the result of weak fabric anisotropy.� All in all, for a
theory without any useful fit parameter, the agreement must
be considered at least a promising first step of the elastic
approach.

Kuwano and Jardine �1� employ the following empirical
formulas �in MPa� for the Ham River sand,

Ev = 204f��v/Pa�0.52, �41�

Eh = 174f��h/Pa�0.53, �42�

Gvh = 72f��v/Pa�0.32��h/Pa�0.2, �43�
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FIG. 6. Variation with pressure P of the shear moduli Gvh ,Ghh,
Young moduli Ev ,Eh, and Poisson ratios 	vh,	hh �inset�, at �h /�v
=0.45 for GE. Symbols �squares, triangles, spheres, and filled
spheres� are the same data for Ham River sand from �1�, at a void
ratio of 0.66.
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Ghh = 81f��v/Pa�−0.04��h/Pa�0.53, �44�

where Pa=0.1013 MPa is the atmospheric pressure and f
= �2.17−e�2 / �1+e�. �f =1.3736 for the void ratio e=0.66.�
Figure 7 shows the theoretical and experimental values for
Eh, Ev, Gvh, and Ghh, as functions of P, for the isotropic case
�h=�v. The fact that Eh,Ev and Gvh,Ghh are pairwise differ-
ent may indicate some fabric anisotropy. Moreover, the the-
oretical curves are 	P1/3, yet the experimental ones seem to
suggest a larger power: 	P1/2. As discussed, this is a known
contradiction between Hertz contact and sound data, with
possible explanations provided by Goddard �9� and de
Gennes �12�, and a question of simplicity vs accuracy in the
present approach.

Figure 8 displays the effect of shear on different moduli,
with �h��v. The upper, middle, and lower figures, respec-
tively, plot the Young moduli Ei, the shear modulus � �both
scaled by their isotropic values Esec and �̃�, and the Poisson
ratios 	ij. In agreement with the empirical formulas Eqs.
�41�–�44�, Ev increases with �s / P, while Eh decreases, in the
region away from yield. As yield is approached, both drop
quickly to zero. This critical preyield behavior is clearly ab-
sent for the empirical formulas and is of interest for future
experiments. In theory, Gvh and Ghh are equal, decreasing
with �s / P moderately, by less than 20%. In experiments, the

shear moduli are split, with one increasing, the other decreas-
ing. The discrepancy between the theory and experiment is in
the range from �s / P=0 to 0.6 within 20%.

Variation of the Poisson ratios 	vh , 	hv , and 	hh is given
by Eq. �36�. As depicted, 	vh and 	hv increase, while 	hh
decreases, with �s / P, all being divergent at yield. No empiri-
cal formulas for the ratios are given in �1�, and the two
circles in the plot simply depict the values from the inset of
Fig. 1. However, 	hh=Eh / �2Ghh�−1 was assumed to hold by
the authors, and, interestingly, it may be derived by taking
i=h and j=h in Eq. �40�, yielding 	hh=Eh / �2��−1.

Assuming that both coefficients A and B of Eq. �7� are
proportional to f of Eqs. �41�–�44�, agreement between ex-
periment and theory is extended to all values of the void
ratio. Comparison was also made to Kuwano and Jardine’s
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FIG. 7. Solid lines present the variation of the Young and shear
moduli, Esec and �, with the pressure P, for the case of vanishing
shear, �v=�h, as calculated from GE. The dotted lines are the em-
pirical formula of Kuwano and Jardine �1�, for Ham River sand at
the void ratio e=0.66. If density inhomogeneity can be ruled out,
the split may be indicative of fabric anisotropy.
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data gained using glass ballotini �1�. Taking A=4200 and
B= 5

3A=7000, we find similar agreement.

VI. THE ELASTIC PART OF FLOW RULES

The increment relation Eq. �4� may also be written in the

matrix form d�� =M̂ du� , with M̂ a symmetric 6�6 matrix,
and d�� ,du� still given as in Eq. �31�. The determinant

det M̂ =9A5�2B�2−Aus
2��, calculated from Eq. �26�, van-

ishes at the yield surface, Aus
2=2B�2, because an eigen-

value, call it m1, also does. This is not a coincidence, as M̂ is
the Jacobian matrix of the energy function, which is positive
only in the stable region. �Incidentally, the determinant of the

Bousinesq model, det M̂ =9A5�3B+4A��3, never vanishes.�
The associated eigenvector m� 1 points along the direction at

which a finite deformation du� �0� may take place under con-
stant stress d�ij =0. Since m� 1 �du� is only the elastic contribu-
tion to the strain, we shall refer to m� 1 as the elastic flow
direction. Setting d�ij =0 in Eq. �4� and using Aus

2=2B�2,
we obtain

duij = −
1

2

�ij +

uij

�
�d� = 
� B

2A
�ij

0

�s

−
�ij

3
�d� .

This duij→du� is the eigenvector m� 1. Remarkably, one can
rewrite this equation as duij /d�=�g /��ij, or

m� 1 � �g/��� with g = �B/2A�s − P , �45�

implying that the elastic flow direction is perpendicular to
the yield surface, as defined by the equation g=0. If the total
flow direction is perpendicular to the yield surface, it is re-
ferred to as an associated flow rule �13,14�. The fact that in
granular media flow rules are not typically associated is
therefore the result of plastic contributions, which we shall
consider, employing the approach of �6�, in a future presen-
tation.

VII. CONCLUSION

For vanishing stress or strain increments, granular media
become increasingly reversible and elastic, and can be de-
scribed by a typical elastic stress-strain relation

d�ij =
��ij

�uk�

duk� �
�2w

�uk� � uij
duk�. �46�

Using the simple energy expression w= �B 2
5�2+Aus

2���, em-
ployed previously to determine static stress distributions in
silos and sand piles and under point loads, we find that the
calculated response is satisfactorily realistic when compared
with the extensive experimental data of Kuwano and Jardine
�1�.

For increasing stress or strain increments, granular media
become successively plastic, i.e., softer, less reversible, and
incrementally nonlinear. They then enter a rate-independent
region frequently accounted for by the hypoplastic model �5�.
By allowing the above elastic stress �ij =−�w /�uij to relax,

we were able to reproduce the basic structure of this model,
and find quantitative agreement with its predictions—based
essentially on the accuracy and appropriateness of the de-
rived quantity Mijk���2w /�uk��uij �see �6��.

APPENDIX: ENERGETIC STABILITY

In the main text, we considered the convexity of the en-
ergy with respect to the variables us and �. The convexity
with respect to uij is relevant. As the transformation between
these two sets of variables is nonlinear, we bear the burden
of proof that both are equivalent.

Thermodynamic stability requires the elastic energy to be
a convex function of its six strain variables, or linear combi-
nations of them. This means that all eigenvalues of the Jaco-
bian matrix �2w /�X��X� are positive. We take X1=uxy , X2
=uxz , X3=uyz, X4= �uxx−uzz� /2, X5= �uxx−2uyy +uzz� / �2�3�,
and X6=−uxx−uyy −uzz, with Q=us

2=2��=1
5 X�

2 . For an energy
of the form w=w�� ,Q�=w�X6 ,Q� and denoting f
�4�w /�Q, a��2w /��2, b�4�2w /�Q��, and c
=16�2w /�Q2, the Jacobian matrix is

�
f + cX1

2 cX1X2 cX1X3 cX1X4 cX1X5 bX1

cX1X2 f + cX2
2 cX2X3 cX2X4 cX2X5 bX2

cX1X3 cX2X3 f + cX3
2 cX3X4 cX3X5 bX3

cX1X4 cX2X4 cX3X4 f + cX4
2 cX4X5 bX4

cX1X5 cX2X5 cX3X5 cX4X5 f + cX5
2 bX5

bX1 bX2 bX3 bX4 bX5 a



with its six eigenvalues given as f1−4= f and

f� =
f + a

2
+

cQ

4
�

1

2
�
 f − a +

cQ

2
�2

+ 2b2Q . �A1�

They are all positive if, and only if, f �0, 2af +acQ−b2Q
�0, and f +a+cQ /2�0, or equivalently

�w

�Q
� 0, 4

�w

�Q
+

�2w

��2 + 8Q
�2w

�Q2 � 0, �A2�

�2w

��2

�w

�Q
+ 2Q

�2w

�Q2

�2w

��2 − 2Q
 �2w

�Q � �
�2

� 0. �A3�

Because us
2=Q, or 2us��w /�Q�=�w /�us, 2us��2w /���Q�

=�2w /���us, 4usQ� ��2w /�Q2�=us��2w /�us
2�−�w /�us,

these conditions are equivalent to Eqs. �11� and �12�, or

�w

��
� 0,

�2w

��2 � 0,
�2w

�us
2 � 0, �A4�

�2w

��2

�2w

�us
2 � 
 �2w

�us � �
�2

. �A5�
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For the energy of Eq. �7�, the inequalities �A4� imply A
�0, B�0, while Eq. �A5� gives the yield condition �13�.
Using P=�w /�� and �s=�w /�us, we can also write Eqs.
�A4� and �A5� as


 �P

��
�

us

� 0, 
 ��s

�us
�

�

� 0, �A6�


 �P

��
�

us


 ��s

�us
�

�

� 
 �P

�us
�

�

2

. �A7�

The Maxwell relation ��P /�us��= ���s /���us
and the identi-

ties ��P /���us
= ��P /����s

+ ���P /��s������s /���us
, ��P /�us��

= ���P /��s������s /�us��, imply an alternative stability condi-
tion,

��P/����s
� 0. �A8�
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